A0 2Y¥GLT-S-MA

Fiamoa ———

PR B = T AR,

JRRC I - - A N"
P 7;3‘

Software for a New Modified Cholesky Factorization

Elizabeth Eskow and Robert B. Schnabel

CU-CS-443-89 August 1989

3

o

P

OF COMPUTER SCIENCE

89 10 24 222

[P U VIR SN SRS

T Cor o wa At bl i £ s et ® R A e o Mg 41 . dhntans

Software for a New Mcdified Cholesky Factorization
Elizabeth Eskow and Robert B. Schnabel

CU-CS-443-89 August 1989

Department of Computer Science
Campus Box 430
University of Colorado,
Boulder, Colorado, 80309 USA

This research was supported by ARO grant DAAL-03-88-0086, NSF grant CCR-8702403,
and NSF cooperative agreement DCR-8420944.

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those ot the author and do not necessarily reflect the views of the
National Science Foundation.

The findings in this report are not to be construed as an official Department of the
Army position, unless so designated by other authorized documents.

T
O

, «;'.

!

Abstract

This paper describes the software for a new modified Cholesky factorization recently proposed by the
authors. Given a sy mmetric but not necessarily positive definite matrix A, the modified Cholesky factor-
ization computes a Cholesky factorization of A + E, where E = 0 if A is safely positive definite, and £ is
a diagonal matrix chosen to make A -~ E positive definite otherwise. The modified Cholesky factorization
was introduced by Gill and Murray and refined by Gill, Murray and Wright, and is commonly used n
optimization algorithms. Our version, which is based upon new techniques. has a considerably smaller
a priorl upper bound on the size of £ than the Gill. Murray and Wright factorization. and appears to
generally produce a smaller E, and a well-conditioned A + E, in practice. Its cost, like the Gill, Murray
and Wright version, is only a small multiple of n? operations greater than the standard Cholesky factor-
ization. Thus it may be useful in optimization algorithms. We summarize ovr algorithm and describe

the code and its use.

1 Introduction

This paper describes the software for a new modified Cholesky factorization algorithm presented

Schrabel and Eskow [1988]. The modified Cholesky factorization is intended for matrices that are sym-
metris but not necessarily positive definite. Given a matrix 4 € R**". the modified Cholesky factoriza-
tion computes

PT(A+ E)P=LLT(orLDLT),

where P is a permutation matrix, and £ € R"*" is 0 il A is safely positive definite, otherwise E is a
nonnegative diagonal matrix chosen such that A+ E is safely positive definite. This type of factorization
was introduced by Gill and Murray [1974] and subsequently refined by Gill, Murray. and Wright [19%1}.
It has become important in solving problems in optimization, and is used in many line search methods
for unconstrained an:. constrained optimization problems (Gill. Murray. and Wright [1981]) as well as in
some trust region niethods (Dennis and Schnabel [19831).

The modified Cholesky factorization of Schnabel and Eskow has superior theoretical properties
to the method of Gili. Murray, and Wright, and appears to have computational advantages as well. The
upper bound on || E|s for Schnabel and Eskow’s method is at worst about 2na, where o = ért)v?.\('ni.»h', | as
opposed to roughly n’a for the method of Gill, Murray, and Wright. In addition, extensive com;_)utational

testing of the software described in this paper was performed by Schnabel and Eskow [1988], on a set

50 and 75. The norm of the matrix £ and

Sl

of randomly generated indefinite matrices with n = 2
condition number of the (A4 + E) computed by this algorithm were compared to those produced by
the Gill. Murray. and Wright [1981] factorization. In almost all cases, ||E|ls for the new algorithm
was significantly smaller, while both methods consistently produced acceptably conditioned matrices.In
addition. the || E||o produced by the Schnabel and Eskow algorithm almost always was within a factor of
2 of the magnitude of the most negative eigenvalue of A, and often much closer. Another nice property
of the new factorization (Gould [1989]) is that in applications like multifrontal methods, where A is large
and sparse and no pivoting is performed, the matrix A may be generated and processed incrementally,
as the factorization proceeds, whereas the Gill, Murray, and Wright method requires the entire matrix
to be known. and processed, in its initialization stage. Thus, the new factorization may be useful in
optimization and other contexts.

In Section 2, we give a brief description of the algorithm. Section 3 demonstrates the use of the

algorithm on a small (4 x 4) example matrix and section 4 explains the parameters and organization of

the code. Appendices A and B provide a sample driver and its output. respectively. and Appendix C

contains the ade for the modified Cholesky factorization.

2 The Modificd Cholesky Factorization Algorithm

This section briefly describes the modified Cholesky factorization algorithm presented in Schnabel and
Eskow 1983). Some detail concerning the techniques used to prevent an ill-conditioned result is included
because the user has the option of adjusting two tolerances related to this. The cost of the factorization
is also described. For a more detailed explanation of the entire algorithm, see the original paper.

The new modified Cholesky factorization uses a two phase approach to compute PY (A + E)P =
LLT. where 4 € R™*™ is symmetric. £ is a nonnegative diagonal matrix or 0. L is a lower trianzular
matrix and P is a permutation matrix. Phase | computes the standard Cholesky factorization. and
ends when the next iteration of the standard factorization would cause some diagonal element in the
reraining submatrix to become non-positive. It performs diagonal pivoting based on the maximum
diagonal element of the submatrix remaining to be factored. Schnabel and Eskow show that at the end
of this phase. no element in the submatrix that remains to be factored is larger. in magnitude, than the
sum of the magnitudes of the largest diagonal and off-diagonal elements in that submatrix originally.

Phase 2 does a modified Cholesky factorization. meaning that at each iteration. an amount
E;, > 0is added to the pivot A;, before the elimination step. A diagonal pivoting strategy is also used.
but in this phase the pivot row is chosen to be the one with the maximum lower Gerschgorin bound
estimat= (see below). The amount E,; added to the pivot element at each iteration is determined from
the actual lower Gerschgorin bound of the pivot row. Schnabel and Eskow show that due to the choice
of E,;. the Gerschgorin bounds of the next remaining submatrix (after elimination) do not grow. In
turn, this implies that || Ell« is bounded above by the magnitude of the most negative lower Gerschgorin
bound of the submatrix that remained to be factored aAt the start of phase 2. This, combined with the
growih bound for phase 1 leads to the theoretical result mentioned in Section 1.

The entire algorithm is outlined in Algorithm 2.1 below.

Algorithm 2.1 - Modified Cholesky Decomposition

Given A € R™*" symmetric and 7, and 7, (e.g. 7, = T2 = macheps?).
find factorization LLT of A+ E, E >0

= max |Ady] =1
Y l?xSnl i} J

(* Phase Onc, A potentially positive definite *)
While j < n do
Pivot on maximum diagonal of remaining submatrix
. A?
M e) <ne
then go to Phase Two :
2lse perform j** iteration of standard Cholesky factorization
and incren.ent J
(* Phase Two. A not positive definite *)
k= j—1(*k = number of iterations performed in Phase One *)
Calculate lower Gerschgorin bounds of Az 4;
Forj:=k+1ton-2do
Pivot on maximum lower Gerschgorin bound estimate
Calculate £;; and add Ejj to Aj;

n
(* EJ‘J.- = ma.x{O.—A” + ma_t{ Z IA,']‘],TQ‘y}.E]-],]_]} *)
i=1+1
update Gerschgorin bound estimates
perform j** iteration of Cholesky factorization
complete factorization of final 2 x 2 submatrix using its eigenvalues

In order to prevent A+ E from being singular or very ill-conditioned, the algorithm includes the
following details. Let v be the maximum diagonal element of A, and 7, and 7, be some small constants
(our default choice is 7, = 7 = macheps3). The switch to phase 2 is made when some diagonal element
in the remaining submatrix would become less than 77, implying that only an indefinite matrix or a
positive definite matrix with condition number greater than ;‘; may be perturbed. During phase 2, the
the amount Ej; to add to Aj; is

n
Ejj = max{0, —Ajj + max{ 3 _ |Aij, 727}, Ej_15-1}
t=j+1
where E;_, ;_, is the amount added to A;_; j_; in the previous iteration. The ¥ term in the above

computation allows the condition number of A+ E to be bounded above. The final place in the algorithm

where the conditioning of the resultant matrix is addressed is in the final ((n — 1)**) iteration of the
factorization. Eigenvalues Xy, and A,, of the remaining 2 x 2 submatrix are computed. which are then

used to calculate

1

l1—-7

Enoincr=Eun= ma.\:{O, En—'.’,n—’_’~ —Xo+ 2% nla-\'{ (’\hn - A;O),‘,'}},

This causes the l» norm of the resultant final 2 x 2 submatrix to be no greater than ;‘; and in practice

usually results in F,_y ,-) haing a smaller value than would otherwise be obtained using Gerschgorin
bounds. The analysis in Schnabel and Eskow [1988] includes these details. In practice. the condition
number of A+ E is usually no greater than 10/ min{r;, 72}, although this bound does not hold in theory

Phase 2 of the algorithm pivots on an estimate of the lower Gerschgorin bounds of the remaining
submatrix. Let G,.(j € 1 € n) denote the lower Gerschgorin bound estimates used during the J

iteration. The actual lower Gerschgorin Circle Theorem bounds are computed once at the start of phase

o

2. giving
-1 n
Gy= A= || - Z lAgl, i=3-.n,
k=j k=141

where j .5 the iteration in which the algorithm switches to phase 2. Thereafter. at each iteration j the
bounds are estimated by

H!Jl Z lAijl

1=y +1

i=j . .on..
:
AJJ

G, =G, + 4] -

n
Since 1n the calculation of the estimates of the bounds, the sum Z [Ai,| needs only to be computed
=541
once at each iteration. the cost of computing the bound estimates is at most n?/2 each additions and

multiplications over the entire algorithm, whereas it would be O(n3) if the actual Gerschgorin bounds
were used. The cost of the entire modified Cholesky factorization is at most 2n? additions and n?/2
multiplications greater than the n3/6+0O(n) each multiplications and additions for the standard Cholesky

factorization of positive definite matrices. If A is safely positive definite, there is no extra cost.

3 Example using the Modified Cholesk; Factorization

The following Jiscussion shows how the modified Cholesky factorization works on an example matrix of
size n = 4. Consider the matrix

(0.3571 —~0.1030 0.0274 —0.0459
—-0.1030 0.2525 0.0736 -0.3845
0.0274 0.0736 0.2340 —0.2878

—0.0459 -—0.3845 -0.2878 0.5549

The eigenvalues of this matrix are -.0767, .1442 , 4004, and .9307 and the maximum diagonal element.
~.is .3549. Let =y = m = 6.0555¢ — 06, which is the value of macheps3 on a Sun 3/75, using double
precision.

In the first iteration. 44 is the maximum diagonal element, therefore row and column 1 are
interchanged with row 2nd column 1. In performing the test of whether or not the J+r1n<i?<n{‘—1., - -:—)1} <
r.~. the minimum occurs at 4aq — :—Tf which is < 0. and consequently the algorithm switches to phase
2.

The actual lower Gerschgorin bounds for the start of phase 2 are [-.1633, -.3086. -.1548, .1803].
The maximum bound is the bound for row 4, hence row and column ! are again interchanged with row
and column 4, and because this bound is greater than 0, £'y; = 0.

Prior to the start of iteration 2, the updated lower Gerschgorin bound estimates become
[~ .2564. —.1410.-.1401] for rows 2 through 4. The maximum of these is the estimate for row 4. re-
sulting in a diagonal pivot of rows and columns 2 and 4. The actual lower Gerscigorin bound for row 2
1s -.1330. therefore E.; = .1330.

In the final iteration, the eigenvalues of the remaining 2 x 2 submatrix are .156329 and -.032113.
or Aj, and Ay, respectively. The value =X, + 1—_327—2(/\;,‘ —Mo) 18052119, which is less than E»j, therefore
the algorithm sets both E33 and E44 to the value added to Az; in the previous iteration, or .1330.

The Cholesky factors and pivot vector are

0.5976 0.0 1 1
—0.0769 0.8259 0.1330 _ 4
L= ,E= and P =
0.0458 —0.3442 0.4964 0.1330 3
—-0.1724 -0.4816 -=0.1697 0.3082 0.1330 2

where PTAP + E = LLT, and P is I permuted by the transformations recorded in P.

ot

The ratio JENL/ — Ay{A). where A;(A) is the most negative eigenvalue of 4. 1s 173, and te
condition number of (A + £ is 21.8. In comparison. for the Gill, Murray. and Wright {1951] algorithm.

SE L = AvA) s 603 and the condition number of (A - £) 15 39.2.

4 Software for the Modified Cholesky Factorization

The code for the modified Cholesky factorization is a straightforward implementation of the algorithin
detailed in Appendix | of Schnabel and Eskow [1988]. It is organized into one main user-callable sub-
program containing three smaller subroutines, each of which are called only once. These three smaller
subroutines serve to initialize variables at the start of the algorithm. initialize the actual Gerschgorin
bounds at the start of phase 2. and compute the factorization of the final 2 x 2 submatrix in phase 2
The remainder of the factorization is performed by the main subroutine. In particular, while the :ode
for pivoting in phase 1 and phase 2 is similar. it has been left in-line to prevent the necessity of having
Oin) function calls. Because the row and column pivoting must affect only th= lower triangle of the input
matrix. this code is lenigihy in comparison to the remainder of the algorithm. All non-integer variables
in the code are double precision.

The main subprogram is called by modcholesky/ndim,n A,g,macheps,7;,m,pivot, E) . The input

parameters to this subroutine are:
o ndun is the dimension of matr'x that contains 4 in the calling program.
e n is the dimension of the input ma‘rix .

s 4is an n x n symmetric matrix (only the lower triangular portion of A, including the diagonal. is

used. and it is overwritten b;* L).
e ¢is an n dimensional work vector.
e macheps is machine epsilon.

e 71 is the reciprocal of the tolerance used for determining when to switch to phase 2, ie. 1/7 is
the minimum condition number of a positive definite input matrix which may be perturbed by the

algorithm.

e 75 is the tolerance used for determining the maximum condition number of the final 2 x 2 submatrix

and in the equation for E;;.

The surpur parameters are
o [atared in the mat U the lower tniangutar portion, including the mun diagons,

e protis arecord of how the rows and columns of the matrix were permuted during the facorization
That is. »ach 7 1s initialized to 1, and at each iteration. if rows and columns 7 and j are switched.

then £, and P, are swapped.

e £1san n-vector, whose ©** efement is the amount added to the diagonal of A at the ** ireration of

the factorization.

A simpler driver, called by moedchel{ndim.n. 4. G . macheps.pivot E) is also available. This driver sets the

.and the remaining input and output parameters are identizsl to those

1
<

rarameters = and = to snacheps
for modchedesky,

A sample dniver program. choldrirer.f and its output are included with the code [om tlo: modifien
Checesky facterizat n. The driver calls a function macheps to comput: machine epsilon for deutd:
precision artihmetic. It can not be guaranteed that this tunction will return the correct value of macheps
on every computer. so the user may want to check this and. if necessary, replace the call to macheps
with a statermnent that assigns the actual value of machine epsilon for that computer to eps. The driver
program also calls a separate subprogram, mkmatriz.f, to generate random test matrices with eigenvalues
within a specified range. Calls to both modchoelesky and modchol are demonstrated in the driver.

Appendices A and B contain the sample driver and sample output. respectively. Appendix €
contains the modified Cholesky factorization code.

Note that if one wishes to process a sparse matrix 4 incrementally as mentioned in Section 1.
the code must be simplified so that all pivoting is eliminated. In this case the calculation of Gerschgorin
bound estimates i1s also unnecessary so the code Is quite simple. The diagonal elements must still be
known throughout the factorization. but the rest of the matrix can then be processed incrementally, with

only the part involved in the current eliminalion step needed at any given iteration.

References

U7 Denmis. J. E. and Schnabel, RO B. Numerical Mcthods for Unconstrained Optimization and Nen-
linear Equations. Prentics-Hall, Englewood Cliffs. New Jersey, 1933.

2 Gill. P E.and Murray. W. Newt n-type methods for unconstrained and linearly constrained opti-
mization. Mathematical Programmang 28, (1974), 311-350.

30 Gl P E. Murray, V. ana Wright, M. H. Practical Optimization. Academic Press. London. 1951
4 Gould. N. Private communication. 1989,
Schnabel, R. B. and Eskow. E. A New modified Cholesky factorizaticn. University of Colorado

Department of Computer Science Technical Report Number CU-CS-415-88. (To appear in S/4M
J. Scr. Stat. Computing.)

A Sample driver

C Oricer for new medified cholesky facterization algerithm.

integer n.ndim

double precision A{100.100)
double precision Atwo(100.100)
double precision g(100)
double precision maxadd
integer pivot{100

double precision E(100)
double precision eps.taul.tau?
integer z

double precision high low
ndim= 100

¢ macheps subrouline computes machine epsilon,
(the following hine may be replaced by assignment to eps
o of correct machine epsidon constant for your machine

call machepsieps)

[

Tolerances used by modchelesky subroutine.

¢ taul 1s used 1 determiming when fo swilch to phase 2 and
- taul s used in determuning the amount to add to the diagonal
C of the final 2X2 submatniz.
C The default values for these tolerances can be used
(" by calling modchol subroutine instead of modcholesky.
- The default values for taul and tau? in medchol are : eps ** 1/3.
taul = eps ** (.3
tau2 = eps “* (1./3.)
C Imitial seed for rande.n .nber generalor used to generale lest
C matrices
z = 1000

high and low are t' e rany of the eigenvalues for the test mairz
C to be generated.

high = 1.0

low = -1.0
C The first test problem will have dimension n=4, so thal the entire
C problem can be printed out.

40

[N}
Ot

]
(7]

T, O

print *"TEST PROBLEM #1"
print *."Test Matrix of size"n
print *."with eigenvalues within the range of “Jow " to "high

call mkmatrix(ndim.n.z. A high,low Atwo.g)

LI

print
print *"*Original 1X4 matrix"

do 25 i=1ln
print (26).(A(1j)j=1.n)
format (4f20.8)

call moadchol{ndim.n, A .g.eps,pivot E)

print t'un
print "."Matrix after factorizaticn with | in the lower triangle”

do 30 i=1.n
print (26).(A11g)j=1.n)

print *. "
print *. "lteration Pivot Amt added to An"
do 75 i=1n
print (V8).i.pivot{ile(i)
format (i2,10x,12.10x.f12.3)

maxadd = E(n)

print x‘un
print *."Maximum amount added to the diagonal is".maxadd

The nert 3 test problems have sizes n=25506 75,
uith eigenvalue ranges (—1.1].[—1,10000], & [-10000,~1] respectively.

n =25

print t’un

print * "TEST PROBLEM #2"

print * "Test Matrix of size",n

print * "with eigenvalues in the range of ",low," to " high

call mkmatrix(ndim,n z,A high,low,Atwo,g)

call modchol(ndim,n.A g,eps,pivot,E)

10

maxadd = E(n)

print *"Maximum amount added to th- diagonal is".maxadd
high = 10000.0

low = —-1.0

n = 50

call mkmatrix(ndim,n.z.A high low Atwo.g)

print t‘uu

print *"TEST PROBLEM #3"

print * "Test Matrix of size",n

print *."with eigenvalues in the range of ".low," to " high
call modcholesky(ndim.n. A .g.eps.taul tau2.pivot k)

maxadd = E(n)

K]
[

print *,"“Maximum amount added to the diagonal is".maxadd

high = —1.0
low = —10000.0
n =753

pfint t‘uu

print *"TEST PROBLEM #4"
print * "Test Matrix of size".n
print *,”with eigenvalues in the range of ".low."” to " high 130

x
call mkmatrix(ndim.nz.A high.low. Atwo.g)
call modchol(ndim.n,A g.eps.pivot,E)

maxadd = E(n}

print * "Maximum amount added to the diagonal is" ,maxadd

140
stop
end
LR R e g e e e e e e 2 2 2
¢ macheps
cIt*#t*t&*l*ltlt#*lt#*tl***‘l**tlttt'#***lt#t*#*l**#*t#****‘*************
subroutine macheps(eps) macheps

double precision eps

1

double precision temp

temp = 1.0

continue

temp = temp / 2.0

if ((1.0 + temp) .ne. 1.0) goto 20

eps = temp * 2.0

return
end

12

P2y

B Sample Driver Output

TEST
Test
with

PRCBLEM #1
Matrix of size 4
eigenvalues within the range of

Original 4X4 matr:x

0.35711021 -0.10302945
-0.10302945 0.25254612
0.02737268 0.07358379
-0.04594879 -0.38451624
Matrix after factorization with 1 in the
0.58758699 -0.10302945
-0.07689054 0.82587804
0.04580534 ~0.34424172
-0.1724C912 -0.48163633
Iteration Pivot Amt added to Aii
1 1 0.006000000
2 4 0.133039861
3 3 0.13303961
4 2 0.13303961

Maximum amount added to the diagonal is
TEST PROBLEM #2

Test Matrix of size 25
with eigenvalues in the
Maximum amount added to

range of
the diagonal is

TEST PROBLEM #3

Test Matrix of size 50
with eigenvalues in the
Maximum amount added to

range of
the diagonal is

TEST PROBLEM #4

Test Matrix of size 75
vith eigenvalues in the
Maximum amount added to

range of
the diagonal is

~1.0000000000000 to

~1.0000000000000 to

~1.0000000000000 to

=10000.0000000000 to

1.0000006C000000

0.02737268 -0.04594879
0.07358379 -0.38451624
0.23396662 -0.28782367
-0.28782367 0.55494709
lower triangle
0.02737268 -0.04594879
0.07358379 -0.38451624
0.49639272 ~-0.28782367
-0.16986202 0.30827612

0.13303960618874

1.00000000000C0
1.2576119845957

10000.0000000000
1.1271617927026

-1.0000000000000
11618.452621394

13

C Modified Cholesky Factorization Code

L"ltttlxt:xtll#t*!ittl“ttlt«tll*ll’t!<ttitt*l'tltlltitlltl't’lttltt”l

subroutine name. modcholesky
authors . Elizabeth Eskow and Robert B. Schnabel
date : December, 1988

purpose : perform a modified cholesky factorization

of the form (Ptranspose)AP + E = L(Ltranspose),

where L is slored in the lower triangle of the

original matriz A.

The factorization has 2 phases:

phase 1: Pivol on the marimum diagonal clemeni.
Check that the normal cholesky update
would result 1n a positive diagonal
at the current iteration, and
if so, do the normal cholesky update.
otherwise swilch to phase 2.
phase 2: Pivol on the minimum of the negatives

of the lower gerschgorin bound
estimales.
Compute the amount to add to the
pivol element and add this
to the pivot element.
Do the cholesky update.
Update the estimates of the
gerschgorin bounds.

input : ndim — largest dimension of matriz that will be used
n — dimension of malrzr 4
A — n*n symmetric matrnz (only lower trangular

portion of A4, including the main diagonal 1s used)
g ~ n*! work array

macheps — machine epsilon

taul — tlolerance used for delermining when lo swilch lo
phase 2
tau?2 — lolerance used for delermining the marimum

condition number of the final 2X2 submatriz.

SIS AT ES AT ESES TN N Ho NN No NN No R N No N RoNo No No HoNa Re Na o NoNa RN NN N Ra N N N N Ra Nae B!

output : L — stored in the mairiz A (in lower trigngular

14

190

210

C portion of A. including the main diagonal)

C

C pivot — a record of how the rows and columns

C of the matrr were permuted while

C performuing the decomposition

C

C E — n*! array, the 1th element is the

c amount added to the diagonal of A

C at the 1th iteration

C 220
C
C"""****I-l‘*ll***#*****t*i**tl**l’****i'*’tt**tl‘****#**tl¥tl*t*l**ll’tl

subroutine modcholesky(ndim,n, A g macheps.taul, tau2,pivot.E) mo dcholesky

integer n,ndim

double precision A(ndim,u).g{n),machepstaul.tau2
integer pivot{n)

double precision E(n)

C 230
C J — current tteration number
C iming — ndez of the row with the min. of the
C neg. lower Gersch. bounds
C imazd — 1inder of the row with the marimum diag.
C element
C 1.itemp.jpl.k — temporary inleger vartables P
C delia — amount to add to Ajj at the jth ileration
C gamma ~ the marimum diagonal element of the original
o matrnzr A.
C normj — the 1 norm of A(colj). rows j+1 ——> n. 240
C ming — the minimum of the neg. lower Gersch. bounds
C mard — the mazimum diagonal element
C taugamma — laul * gamma
C phase! — logical, true if in phasel. otheruise false
C deltal. temp.jdmin tdmin — temporary double precision vars.
C
integer).iming,i,imaxd,itemp,jpl.k
double precision delta,gamma
double precision normj, ming,maxd 250
double precision deltal temp,jdmin,tdmin,taugamma
logical phasel
call init(n, ndim, A, phasel, delta, pivot, g, E,
* ming,taul,gamma,taugamma)
do 10) = 1, n-1
c
C PHASE 1
C 260

15

if (phasel ; then

c
C find inder of marimum diagonal element A(i1) where 1>=j
c
maxd = A(jg)
imaxd =]
do 20 i = j+1, n
if (maxd Mt. A(i.1)) then
maxd = A(i.d)
imaxd = i 275
end if
20 continue
C
C pivot to the fop the row and column with the maz diag
C
if {imaxd .ne. j) then
c
C swap row j with row of mar diag
C 250
do 30 i =1, -1
temp = A(J.)
A1) = A(imaxd.i)
A(imaxd.i) = temp
30 continue
C
C swap colj and row mazrdiag between j and mardiag
C
do 351 = j+1,imaxd-1
temp = A(i]) 290
A(1j) = A(imaxd.i)
A(imaxd,) = temp
35 continue
C
C swap column j with column of maz diag
C
do 40 i = imaxd+1, n
temp = A(i,)
A(ig) = A(i,imaxd)
Af(i,imaxd) = temp 300
40 continue
C
C swap diag elemenis
C
temp = A(jj)
A()J) = A(imaxd,imaxd)
A(imaxd,imaxd) = temp
C
o swap elements of the pivot vector
C 310

16

DR

DR RS

itemp = pivot(j)
pivot()) = pivot(imaxd)
pivot{imaxd) = itemp

end if

Check to see whether the normal cholesky update for this
iteration would resull in a positive diagonal,
5

and 1f not then switch to phase 2.
jpl = j+l
if (A(jJ).gt.0) then
do 60 i = jpl, n
temp = Alij) * A{iJ) / AUJ)

tdmin = A(11) ~ temp
if (i .ne. jp1) then

jdmin = min(jdmin, tdmin}
else
jdmin = tdmin
end 1if
continue
if (jdmin .lt. taugamma) phasel = .false.
else
phasel = .false.
end if

if (phasel) then
do the normal cholesky update if stiil in phase !

AGJ) = dsart(A())
do 701 = j+1, n
A(L) = A(L) / AGY)
continue
do 75 i=j+1,n
do 80 k = j+1, 1
A(Lk) = AGKk) — (A1) * A(kY))
continue
continue

if {(; .eq. n—1) A(n,n)=dsqrt(A(n,n))

else

17

340

360

aan

™

DD NS

aoaq

100

aaaq

calculate the negatives of the lower gerschgorin
call calegerschindim.n.Aj.g)
end if

end if

PHASE 2
if (.not. phasel) then
if (j .ne. n—1) then
find the minimum negative gershgorin bound
do 30 1 = jn

if (i .ne. j) then
if (ming .gt. g(1)) then

ming = g(1)
iming = 1
end if
else
iming =]
ming = g(j)
end if
continue

pivot to the top the row and column with the
mimimum negative gerschgorin bound

if (iming .ne. j) then

swap row) with row of min gersch bound
do 100 i = 1, j—1

temp = A(),i)

AG,) = Aliming)
A(iming,i) = temp

continue

swap colj with row iming from j to iming
do 105 i = j+1,iming—~1

temp = A(1,)
A(ij) = A(iming,)

18

bounds

38C

400

410

Af{iming.1) = temp
1us continue

swap col

amn jowith column of min gersch bound
do 110 i = iming+1. n
temp = A(1))
A(lg) = A(iiming)
A(l.iming) = temp
110 continue 120

swap diagonal elements

Oan

temp = A(jJ)
A(jJ) = A{iming.iming)
A{iming.iming) = temp

swap elrments of the prvot vector

DD

itemp = pivot(j) 44:
pivot(j) = pivot(iming)
pivot(iming) = itemp

swap elemenis of the negative gerschgorin bounds vector

aan

temp = g(})
g(J) = g{iming)
gliming) = temp

end if 440

Calculate delta and add to the diagonal.
delta=maz{0.—A(jj) + mar{rormjtaugamma},delta_previous)
where normj=sum of |A(1j})|.for i=1n,

delta_previous s the delta computed at the previous iteration,
and {augamma s laul*gamma.

IDESHORS NORD N

normj = 0.0
do 140 i = j+1, n 450
normj = normj + dabs(A(i,j))
140 continue

temp = max(normj,taugamma)
deltal = temp — A(jJ)

temp = 0.0

deltal = max(temp, deltal)

delta = max(deltal,delta)
E(j) = delta
A(J) = AQJ) + E@) 460

19

c
C update the gerschgorin bound estimates
¢
if (A(jJ) .ne. normj) then
temp = (normj/A(Jj)) — 1.0
do 1501 = j+1. n
g(l) = g(i) + dabs(A(ij)) * temp
150 continue
370
end if
C
C do the cholesky update
C
A(GJ) = dsare(AG))
do 1601 = j+1. n
Al = AGgY / AQD
160 continue
do 1651 = j+1. n
do 170 k = j~r~1. 1 9
AQLk) = AGK) — (AlLg) * Akg)
170 continue
163 continue
else
call final2by2(ndim. n. A, E. j, tau2, delta,gamma)
end if
end if
10 continue
return
end
Ctlt«t“l«t*“***l*‘****#*l**"*ti**l-"-"&*«t**“tl**tl*‘***********?l*****i"1’
C subroutine name : modchol
C
C purpose : Simple driver for the modified cholesky algorithm, 500
C with the tolerances set to the default values.
C t.e. taul = tau? = macheps ** 1/3
C
C input : n,ndim,A,g,macheps
C
C output : piwvol, E
C (See subroutine modcholesky above for details on all parameters)
Ctt"*#tﬂ”’l’*’"#"4’"‘#*l-""lli"ttl*"l"l"lt#*Il"**#‘t'*‘**#tl*“**#*#*
subroutine modchol(ndim,n,A,g,macheps,pivot,E) modchol

20

integer ndim. n

double precision A{ndim.n).g(n).machrps
imteger pivot(n)

double precision E(n)

double precision taul.tau?

taul = macheps ** (1./3.)

taul = taul

call modcholesky(ndim.n, A g.macheps.taul tau2 pivot.F)

wn
v
.

return
end
('/“lttll’l"l“l"l"ltl’ll’"’l3"‘]l’l’"l’l‘l’ll”.”"“‘3"'("“"’.’"“"
C subroutine name - inut
. purpose - set up for start of cholesky faclorization
g
« input o0 ndun. AL tan!
¢ g
o oulput . phasel — bhoolcan ralue set to true 1f 1n phase one,
‘ otheruise false.
« delta — amount to add 10 Aj) at iteration j
a prvot.g. E — described above 1n modcholesky
C mung — the mumimum negative gerschgorin bound
- gamma — the marimum diagonal clement of A
C taugamma — taul * gamma
C

('~xtt:::--.:ct:xxt:xtt:sstttttttttztt:tz::tx;:uttt*xxttrtt#ttt:ttttx:xxtxx

subroutine imit(n.ndim.A.phasel.delta.pivot.g,E.ming, 54
taul.gamma.taugamma)

integer n.ndim

double precision A(ndim.n

logical phasel

double precision Aelta.g(n).E(n)

integer pivot(n)

double precision ming taul gamma.taugainma

o
o

phasel = .true.
deita = 0.0
ming = 0.0
do 10 i=1n
pivot(i)=i
gli)= 0
Ei) =0
10 continue

find the marimum magnitude of the diagonal elements.
if any diagonal element 1s negative, then phasel 1s false.

gamma = dabs(A(1.1))

if (AL D Qe 0) phasel = false.

do 20 1=2n
if (dabs(A(i.0)) .gt. gamma) gamma=A(l.)
if (A(id) .It. 0) phasel = false.

20 continue
57C
taugamma = taul * gamma
c
c if not in phasel. then calculate the initral gerschgorin bounds
¢ needed for the start of phase?.
c
if { .not.(phasel)) call calcgersch(ndim.n,A.1.g)
return
end DAL
':‘l!ll'lxltvtttlettlttxttll-ltlitlttttl*lllil**l’tlttlt*ltltl’xt!*tztlllt’tt
(-
C subroutine name : calcgersch
.
C purpose : calculate the negative of the gerschgorin bounds
C called once at the start of phase II.
c
C tmpul ndim. n. AL}
-
o output : g — an n veclor conlaining the negatives of the 57
¢ Gerschgorin bounds.
-
C'lallllt’:lltlll-"tltllttlil'*illll’-""‘X#*lll*’ti**t**tll’******x¥!*“*I!ii
subroutine calcgersch(ndim. n. A, j. g) CE‘LngCI‘SCh
integer ndim. n, j
double precision A(ndim,n), g(n)
integer 1, k
double precision offrow 600
do 101 =3 n
offrow = 0.0
do 20 k = j, i-1
20 offrow = offrow + dabs(A(ik))
do 30 k = i+1, n
30 offrow = offrow + dabs(A(k,))
g(i) = offrow — A(i,)
10 continue
610

22

return

end
MEEEEEEEEE NS SRR R R R R R S R R S RS R R RS R PR R R RS SRR RSN RPN RESESREN RSN ERSER S

~

subroutine name : final2by?

purpese . Handles final 2X2 submatrir in Phase II.
Finds eigenvalues of final 2 by 2 submainz,
calculates the amount to add o the diagonal.
adds to the final 2 diagonal elements, 62
and does the final update.

input ; ndim, n, 4. E, ;. tau?,
delta — amount added to the diagonal in the
previous tferalion

oulput : A — matrir with complete ! factor in the lower trianle,
E — n*! vector containing the amount added to the diagonal
a! cach iteration.
dellta — amount added 1o diagonal elements n—1 and n. 3

ST AT SN TN

Cxxxxxxxxxxx:x:x::ttttt;itttxxxtxx*tttt*l::t:trtttt?ttxt:xlxt:ltI*:x:taxi

subroutine final2by2(ndim, n. A, E, j, tau2. delta,gamma) ﬁlléll?b}'?

integer ndim. n. j
double precision A{ndim.n), E{n). tau2, delta.gamma

double precision tl, t2. t3.lambdal.lambda2 lambdahi lambdalo
double precision deltal, temp

w40

C
C find crgenvalues of final 2 by 2 submatriz
c

tl = Atn=1n-1, + Ala.an)

t2 = A(n—1n-1) — A(n,n)

t3 = dsqre(e2%t2 + 4.0%A(n,n—1)*A(n,n~1))

lambdal = (t1 - t3)/2.

lambda2 = (t1 + t3)/2.

lambdahi = max(lambdal,Jambda2)

lambdalo = min(lambdal,Jambda?2) 650
C
C find delta such that:
C 1. the 12 condition number of the final
C 2X2 submatriz + delta*] <= tau?
C 2. delta >= previous delta,
C 3. lanibdalo + della >= tau?2 * gamma,
C where lambdalo is the smallest eigenvalue of the final
C 2X2 submatriz
C

660

23

N0

deltal=(lambdahi-lambdalo)/{1.0—tau?2)
Jdeltal= max(deltal .gamma)

deltal= tau2 * deltal — lambdalo
temp = 0.0
delta = max(delta. temp)

delta max(deltal. delta)
if (delta .gt. 0.0) then
A(n—1n—-1) = A{n=1n-1) + delta
A(n.n) = A(n.n) + delta
E(n—-1) = delta
E(n) = delta
end if

final updaie

A(n=1n-1) = dsgrt{A(n—1.n-1}))
A(n.n—1) = Afn.n-1)/A(n-1n-1)
A(n.n) Alnn) = (A{(n.n=1)*A(n.n-=1))

A(n.n) = dsqrt{A(n.n))

24

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

g -
REPORT DOCUMENTATION PAGE

1a. REPOAT SECURITY CLASSIFICATION ib. RESTRICTIVE MARKINGS
Unclassified

28 SECURITY CLASSIFICATION AUTHQRITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

+ Approved for public release;
SSIFICATION/DOWNGRADING S

To. OECLASS ON/DOWNGRADING SCHEDULE distribution unlimited

s. PEAFORMING ORGANIZATION AEPORT NUMBER(S) 5. MONITORING ORGANIZATION AEPORT NUMBER(S)
CU-~-CS-443-89

6a NAME OF PERFORMING OQORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING QRGANIZATION
tif applicadie)

University of Colorado U.S. Army Research Office

6c. ADORESS (Clty, State ana ZIP Code) ' 7b. ADDAESS (City, State and ZIP Coas)
Campus Box B-13% Post Office Box 12211
Boulder, CO 80309 Research Triangle Park, NC 27709-2211
8s. NAME OF FUNOING/SPONSDRING 8b. OFFICE SYMBOL |9, PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
QRAGANIZATION (11 applicabie)

K
DAAL-03-88/0086

8c. ADORESS (City, State and ZIP Coas) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NQ.

11. TITLE (/nciuae Secunty Classifications
Software for a New Modified Cholesky

- £12. PEASONAL AUTHORIS) Factorization
p——=Llizabeth Eskow and Ropert B, Schgabel
13a TYPE OF REPORT 130, TIME COVERED 14. DATE OF REPORT (Yr., Mo., Do) 18, PAGE COUNT
Technical FROM 892 zllé TO 90/5/15 89/08/31 28

18. SUPPLEMENTARY NOTATION

17. COSATI CQOES 18 SUBJECT TERMS (Conntnue on reverse i/ necessary and idencfy by dock number)
S1ELD GROuP | sus. GR.

Cholesky software, Cholesky factorization, non-positive
definite

19. ABSTRACT (Continue on reverse i/ necessary and idennfy by dock number)

This paper describes the software for a new modified Cholesky factorization recently proposcd by
the authors. Given a symmetric but not necessarily positive definite matrix A, the modified
Cholesky factorization computes a Cholesky factorization of A+E, where £=0 if A is safely posi-
tive definite, and E is a diagonal matrix chosen to make A+E positive definite otherwise. The
modified Cholesky factorization was introduced by Gill and Murray and refined by Gill, Murray
and Wright, and is commonly used in optimization algorithms. Our version, which is based upon
new techniques, has a considerably smaller a priori upper bound on the size of £ than the Gill,
Murray and Wright factorization, and appears to generally produce a smaller £, and a well-
conditioned A+E, in practice. Its cost, like the Gill, Murray and Wright version, is only a small
multiple of n2 operations greater than the standard Cholesky factorization. Thus it may be useful
in optimization algorithms. We summarize our algorithm and describe the code and its use.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. AGBSTRACT SECURITY CLASSIFICATION
UNCLASSISIED/UNLIMITED same as asT. C oTic useas O Unclassified
22a. NAME OF AESPONSIBLE INOIVIOUAL 22b. TELEPHONE NUMBER 22¢. OFFICE SYMBOL

.] {Inciude Ares Code)

619/549-0641

D0 FORM 1473, 83 APR ECITION OF 1 JAN 7713 OBSOLETE. Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Dr. Jagdish Chandra

